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Coherent stochastic resonance in the case of two absorbing boundaries

Asish K. Dhara and Tapan Mukhopadhyay
Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Calcutta 700064, India

~Received 15 January 1999!

The coherent stochastic resonance is observed and studied with a multistep periodic signal in a continuous
medium having two absorbing boundaries. The general features of this process are exhibited. The universal
features at the resonance point are demonstrated. The kinetic behaviors around the resonance point are also
presented.@S1063-651X~99!10409-4#

PACS number~s!: 05.40.2a
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I. INTRODUCTION

There has been a great deal of interest in the underst
ing of the mechanism of interplay between random noise
a deterministic periodic signal after the pioneering achie
ment of the separation of large DNA molecules in a g
medium by the application of a uniform and time-depend
periodic electric field@1,2#. It has been found that with thi
technique, large molecules in the size range 2–400 kb
hibit size-dependent mobilities. Similar ideas have a
arisen in other types of chromatographic processes@3#.

The first-passage time is a useful tool with which to
vestigate the diffusive transport property in a medium. T
theory of first-passage time has been worked out in g
detail for both an infinite medium and explicitly time
independent diffusive processes@4–6#. However, for explic-
itly time-dependent processes and in a finite medium, a
lytic closed-form expressions are not available. In t
respect also this problem has attracted much attention in
scientific community.

The first analysis of this phenomenon has been done f
random walk on a lattice numerically, and for a diffusiv
process in a continuous medium with a periodic signal
small amplitude perturbatively@7#. Their results indicate tha
the oscillating field can create a form of coherent mot
capable of reducing the first-passage time by a signific
amount. This fact clearly implies that the mobility of a pa
ticle in a diffusive medium can be increased by the appli
tion of a proper oscillating field. This phenomenon is know
in the literature as coherent stochastic resonance~CSR!.

In order to investigate the reason for this cooperative
havior of random noise and a deterministic periodic sign
this problem has been formulated in much simpler terms
approximating the sinusoidal periodic signal by the telegra
signal @8# and it was concluded incorrectly that the syste
exhibits CSR. Subsequently, it has been shown@9# that the
telegraph signal cannot produce CSR. It was then argued@9#
that the low-frequency behavior could cause such coop
tive behavior.

In this paper we approximate the sinusoidal signal b
multistep periodic signal~explained below! and obtain an
expression for the mean first-passage time~MFPT!. After
giving the derivation of MFPT in Sec. II, the results of th
calculations are discussed in Sec. III. First, we present
general characteristics of CSR. The calculation clearly exh
its how resonance appears in our multistep approxima
and fails to show in the single-step telegraph approxima
PRE 601063-651X/99/60~3!/2727~10!/$15.00
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of the periodic signal explaining the conjecture of Porra@9#.
The general characteristics of the moments in our calcula
are also in agreement with the numerical simulation of
random-walk model on a lattice@7#. The characteristic fea
tures of the first-passage time density function~FPTDF! for
this phenomenon are also presented in this subsection. In
next subsection we focus on the resonance point and dem
strate some universal features associated with it. The su
quent subsection deals with the characteristic changes o
physical variables as we cross, in particular, around the re
nance point. This leads to a better understanding of this
operative behavior. Finally, a few concluding remarks ha
been added in Sec. IV.

II. DERIVATION OF THE MEAN FIRST-PASSAGE TIME

We consider diffusion in one dimension perturbed by
periodic force. The motion of the particle is given by th
Langevin equation

Ẋ5A sinVt1j~ t !, ~1!

whereX refers to the stochastic variable,A and V are the
amplitude and frequency of the sinusoidal signal, andj(t) is
a zero mean Gaussian white noise of strengthD with the
autocorrelation function given by

^j~ t !j~ t8!&52Dd~ t2t8!. ~2!

The motion is confined between two absorbing boundarie
x50 andx5L. The Fokker-Planck equation correspondi
to Eq. ~1! is

]p~x,t !

]t
52A sinVt

]p~x,t !

]x
1D

]2p~x,t !

]x2
, ~3!

with absorbing boundary conditions atx50 andx5L; i.e.,
p(0,t)5p(L,t)50. We now introduce the dimensionles
variables

j5~A/D !x, u5~A2/D !t, v5V/~A2/D !, ~4!

to write Eq.~3! in terms of new variables:

]p~j,u!

]u
52sinvu

]p~j,u!

]j
1

]2p~j,u!

]u2
. ~5!
2727 © 1999 The American Physical Society



,
s

lti
di

lu
(
we
e.
ee
r

a
ive
th

th
in
p
a
d

use
.

ck
t
nc-
et
s

-
ny
is-

ity
the
-

2728 PRE 60ASISH K. DHARA AND TAPAN MUKHOPADHYAY
The boundary conditions are rewritten asp(0,u)5p(L,u)
50, whereL5(A/D)L. In the following we calculate all the
physical quantities in terms of these new variables and
required, one may translate all the interpretations in term
the usual variables by the transformation equations~4!.

We next approximate the sinusoidal signal by the mu
step periodic signal. The construction is as follows. We
vide the half-cycle of the signal by (2p11) intervals so that
each interval in the horizontalu axis is of size@Du/(2p
11)# with vDu5p. We define (2p11) numberssk along
the verticalj axis as

sk5
~sin~kp/2p11! 1sin@~k21!p/2p11# !

2
;

k51,2,. . . ,p, ~6a!

sp1151, ~6b!

sp111r5sp112r ;r 51,2,. . . ,p. ~6c!

Each number sk is associated with the interval (k
21)Du/2p11,u< kDu/2p11 with k51,2,. . . ,(2p11).
Equation~6! clearly shows that

0,s1,s2, • • • ,sp,sp11

51.sp12.sp12. • • • .s2p11.0. ~7!

Equation~7! states that in order to reach the maximum va
~51! of the signal from the zero level, we have to havep
11) step up and from the maximum to the zero level
have (p11) step down. This is for the positive half-cycl
For the negative half-cycle, similar constructions have b
done with the replacementsk→2sk , ; k and each numbe
2sk is associated with the intervalDu@11(k21/2p11)#
,u<Du@11 (k/2p11)# with k51,2,. . . ,(2p11). This
approximation for the full one cycle of the sinusoidal sign
~as shown in Fig. 1! is then repeated for the next success
cycles. The construction clearly shows that we get back
usual telegraph signal withp50.

One may note, however, that thev which we have defined
for this approximated signal is not the same as that of
sinusoidal signal, because the Fourier transform of the s
soidal signal would give only one frequency while this a
proximated signal in the Fourier space corresponds to m
sinusoidal frequencies, especially because of its sharp

FIG. 1. Sinusoidal signal~dashed curve! and approximated
three-step (p52) periodic signal~solid curve! for the full one cycle
as a function ofu.
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continuities. Yet we encourage this approximation beca
in each interval the equation becomes time-independent

In future development, we associate the indexn with the
positive half-cycle and the indexm with the negative. Index
i will refer to the cycle number. Since the Fokker-Plan
equation@Eq. ~5!# in each interval will be that for a constan
bias, we can express the conditional probability density fu
tion p(j,uuj8,u8) in terms of the complete orthonormal s
of eigenfunctionsun(j) satisfying the boundary condition
un(0)5un(L)50,

p~j,uuj8,u8!5(
n

un
1~j!un

2~j8!exp@2ln~u2u8!#,

~8!

where

un
6~j!5~2/L!1/2exp~6sj/2!sin

npj

L
, ~9a!

ln5
n2p2

L2
1

s2

4
~9b!

with s as the corresponding value ofsk in the appropriate
interval where the conditional probability is being decom
posed. The conditional probability density function in a
interval, sayl, can then be calculated from the previous h
tory by convoluting it in each of the previous intervals:

p~j l ,u l uj1 ,u1!5E • • • E dj l 21dj l 22 • • • dj2

3)
j 52

l

p~j j ,u j uj j 21 ,u j 21!. ~10!

For the negative half-cycle, the calculation of the probabil
density function is similar except that we have to replace
index n by m and the probability density function is decom
posed as

p~j,uuj8,u8!5(
m

um
2~j!um

1~j8!exp@2lm~u2u8!#,

~11!

where the expressions forum
6(j) andlm are the same as in

Eqs.~9!.
The survival probability at timeu when the particle is

known to start fromj5j0 at u50 is defined as

S~uuj0!5E
0

L

dj p~j,uuj0,0!. ~12!

The first-passage time density function~FPTDF! g(u) is
defined as

g~uuj0!52
dS~uuj0!

du
. ~13!
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Physically,g(u)du gives the probability that the particle a
rives at any one of the boundaries in the time intervalu and
u1du. From this density function one can calculate vario
moments:

^u j&5E
0

`

du u jg~u!. ~14!

From Eq. ~14!, one can easily calculate the mean fir
passage time~MFPT! ^u& and the variances25^u2&2^u&2

of the density functiong(u).
It is then quite straightforward to calculate the surviv

probability at any interval of any cycle. We will write dow
the final formulas:

S1~uuj0!5Cn(2p11)(i 21)11

1 exp$2ln(2p11)(i 21)11

3@u22~ i 21!Du#%Fi 21~un(2p11)(i 21)11

2 !,

2~ i 21!Du,u<S 2~ i 21!1
1

2p11DDu, ~15a!

S1~uuj0!5Cn(2p11)(i 21)1(k11)

1 exp$2ln(2p11)(i 21)1(k11)

3@u22~ i 21!Du#%

3)
j 51

k

$^un(2p11)(i 21)1( j 11)

2 uun(2p11)(i 21)1 j

1 &%

3expF Du

2p11 S kln(2p11)(i 21)1(k11)

2 (
j 50

k21

ln(2p11)(i 21)1( j 11)D GFi 21~un(2p11)(i 21)11

2 !,

S 2~ i 21!1
k

2p11DDu,u<S 2~ i 21!1
~k11!

2p11 DDu,

k51,2,. . . ,~2p21!, ~15b!

S1~uuj0!5Cn(2p11)i

1 exp$2ln(2p11)i
@u2~2i 21!Du#%

3A1~un(2p11)i

2 ,un(2p11)(i 21)11

1 !

3Fi 21~un(2p11)(i 21)11

2 !,

S 2~ i 21!1
2p

2p11DDu,u<~2i 21!Du, ~15c!

S2~uuj0!5Cm(2p11)(i 21)11

2 exp$2lm(2p11)(i 21)11

3@u2~2i 21!Du#%^um(2p11)(i 21)11

1 uun(2p11)i

1 &

3A1~un(2p11)i

2 ,un(2p11)(i 21)11

1 !

3Fi 21~un(2p11)(i 21)11

2 !,

~2i 21!Du,u<S ~2i 21!1
1

2p11DDu, ~15d!
s

-

l

S2~uuj0!5Cm(2p11)(i 21)1(k11)

2 exp$2lm(2p11)(i 21)1(k11)

3@u2~2i 21!Du#%

3)
j 51

k

$^um(2p11)(i 21)1( j 11)

1 uum(2p11)(i 21)1 j

2 &%

3expF Du

2p11 S klm(2p11)(i 21)1(k11)

2 (
j 50

k21

lm(2p11)(i 21)1( j 11)D G
3^um(2p11)(i 21)11

1 uun(2p11)i

1 &

3A1~un(2p11)i

2 ,un(2p11)(i 21)11

1 !

3Fi 21~un(2p11)(i 21)11

2 !,

S ~2i 21!1
k

2p11DDu,u<S ~2i 21!1
~k11!

2p11 DDu,

k51,2,. . . ,~2p21!, ~15e!

S2~uuj0!5Cm(2p11)i

2 exp@2lm(2p11)i
~u22iDu!#

3A2~um(2p11)i

1 ,um(2p11)(i 21)11

2 !

3^um(2p11)(i 21)11

1 uun(2p11)i

1 &

3A1~un(2p11)i

2 ,un(2p11)(i 21)11

1 !

3Fi 21~un(2p11)(i 21)11

2 !,

S ~2i 21!1
2p

2p11DDu,u<2i Du, ~15f!

where

Cn
15E

0

L

dj un
1~j!, ~16a!

Cm
25E

0

L

dj um
2~j!, ~16b!

A1~un(2p11)i

2 ,un(2p11)(i 21)11

1 !

5expF2S Du

2p11Dln(2p11)(i 21)11G
3)

j 51

2p H ^un(2p11)(i 21)1( j 11)

2 uun(2p11)(i 21)1 j

1 &

3expF2S Du

2p11Dln(2p11)(i 21)1( j 11)G J , ~16c!
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A2~um(2p11)i

1 ,um(2p11)(i 21)11

2 !

5expF2S Du

2p11Dlm(2p11)(i 21)11G
3)

j 51

2p H ^um(2p11)(i 21)1( j 11)

1 uum(2p11)(i 21)1 j

2 &

3expF2S Du

2p11Dlm(2p11)(i 21)1( j 11)G J ,

~16d!

and the functionsFi are generated through the recursion
lation:

Fi~un(2p11)i 11

2 !5^un(2p11)i 11

2 uum(2p11)i

2 &

3A2~um(2p11)i

1 ,um(2p11)(i 21)11

2 !

3^um(2p11)(i 21)11

1 uun(2p11)i

1 &

3A1~un(2p11)i

2 ,un(2p11)(i 21)11

1 !

3Fi 21~un(2p11)(i 21)11

2 !, ~17!

with F0(un1

2 )5un1

2 (j0). The angular brackets in the abov

equations imply a dot product of the corresponding fu
tions, for, e.g.,

^u1uu2&5E
0

L

dj u1~j!u2~j!. ~18!

The cycle variablei runs over positive integers; i.e.,i
51,2,3, . . . . The positive and negative symbols of the s
vival probabilities indicate their value over the positive a
negative part of the cycles, respectively. In all these exp
sions, viz., Eqs.~15!–~17!, for any subscript, eithern or m or
both, wherever they appear more than once, the summa
over them is implied. The effect of history is explicit in th
expressions for survival probabilities. Once the survi
probability S(uuj0) is obtained from these formulas, th
FPTDF, MFPT, and the corresponding variance are obta
by employing Eqs.~13! and ~14!. Evaluation of MFPT and
other relevant quantities requires the sum of infinite ser
which must be truncated in order to obtain a final res
Convergence of MFPT is ensured by gradually increas
the number of terms~i.e., number of eigenvalues! for the
calculation. The process is truncated when MFPT does
change up to two decimal points of accuracy with the cha
of the number of terms.

III. RESULTS AND DISCUSSIONS

The survival probability, mean first passage time~MFPT!,
corresponding variances, and first-passage time density f
tions ~FPTDF! are calculated using the derived formulas f
this process. The results are summarized below.
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A. General features of CSR

The MFPT is calculated for a single-step telegraph sig
(p50) with j05L/2. Most of the calculations are done wit
this specific value ofj0 . The variation of the results with the
variation ofj0 is also demonstrated~see the text below!. No
nonmonotonous behavior is observed in MFPT as we v
the frequencyv. This is in complete agreement with Porra
observation@9#. The calculation is done for the lengthL520
and the result is shown in the curvea of Fig. 2. However,
when we takep51, i.e., when the sinusoidal signal is a
proximated by a two-step periodic signal, the calculation
MFPT for the same length shows clearly the nonmonoto
behavior. This is shown in curveb of the same figure. This
result clearly demonstrates that mere flipping of the bias~sig-
nal! direction periodically would not produce the cohere
motion. As the rate of flipping increases, it merely preve
the particle from reaching the boundaries and theref
MFPT increases monotonically. It may be noted that wh
the flipping rate is very high, the effect of the signal is almo
nonexistent and the transport is effectively diffusive in n
ture. This is of course true in any type of periodic sign
Therefore, for any type of approximation of the sinusoid
signal or for any value ofp, this feature would show up. In
particular, forp51, we observe from curveb of Fig. 2 that
MFPT asymptotically reaches the diffusive limitL2/8 ~550
in this case!. The usual telegraph signal offers a constant b
of maximum magnitude for the larger time than for a tw
step approximation. Hence the particle always has a la
probability of reaching the boundary in short time for thep
50 case than for thep.0 case. Hence MFPT for thep
50 and for anyv is always less than forp.0 case. This is
observed in Fig. 2.

The application of any bias always reduces the MF
below that for the nonbiased diffusion. In CSR we alwa
have a competition between diffusion and the oscillatory
fect of the bias. For very large frequency, as the bias ef
becomes ineffective, MFPT would essentially be guided
the diffusive process. For zero frequency of the multis
periodic signal, the MFPT can be analytically evaluate
When it starts from the midpoint of the medium, it is e
pressed as ^u(v50,j05L/2)&50.5(L/s1)tanh(s1L/4).
When the frequency is very small, the process is predo
nantly diffusion with a constant values150.5 sin(p/2p11)
effective for 0,u< p/v(2p11). However, as the fre-
quency increases slowly, the probability of having an

FIG. 2. MFPT^u& as a function ofv; ~a! for p50; the usual
telegraph signal~b! for p51; the two-step periodic signal (L
520,j05L/2!.
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creased bias values2 ~51 for p51) before it reaches the
boundary increases. This bias force reduces the surv
probability and also MFPT. Hence one would expect a m
mum MFPT. On the other hand, for the usual telegraph
nal ~the p50 case!, for very low frequency, from the very
beginning bias force affects the particle with its maximu
strength. When the frequency is very low, this constant b
diffusion continues for a longer time and there is no chan
over of the magnitude of the bias as in the case ofp51.
After having a flip, the particle again suffers a constant b
diffusion in the direction opposite to the previous one.
frequency increases slowly, this picture remains unchan
until a stage is reached for which the flipping effect becom
dominant during the particle’s survivability inside the m
dium and MFPT increases. This is observed in Fig. 2.

Next we continue all our calculations withp52 or with
the three-step telegraph signal. Calculation reveals that
value of MFPT does not change much from that withp51.
On the other hand, thep52 signal approximates better tha
the p51 signal. We restrict our calculation to thep52 ap-
proximation of the periodic signal.

Typical survival probability and the corresponding dec
rate defined asr(u)52 @dS(u)/du#/S(u) are plotted as a
function ofu for L520 andv50.1 in Fig. 3. The plot shows
that the survival probability@plot ~a!# goes through the pla
teau where the change of survival probability is compa
tively less. The decay rater(u) @plot ~b!# correspondingly
shows a minimum at these points. This is a characteri
feature for CSR. This feature is in agreement with the
merical simulation of the process as a random walk o
lattice @7#.

Next we calculate the MFPT̂u& and the variances2 as a
function of frequency v for different lengths ~L
510,20,30,40,50!. These are presented in Fig. 4 and Fig.
respectively. Both the cumulants go through a minimum
the frequency rises from a very low value for each lengthL.
This feature is also in agreement with the lattice simulat
work @7#. It is observed that the minimum for both momen
occurs at the same frequency for each length. The valu
MFPT ^u& increases with length at all frequencies. This
understandable because as the length increases, on av
the particle will spend more time in the medium befo
reaching the boundaries. It is also observed that the
quency at which the minimum occurs shifts toward low fr

FIG. 3. ~a! 2 ln S(u) as a function ofu ~dashed curve!. ~b! The
decay rate,r, as a function ofu ~solid curve! (L520,j05L/2,p
52,v50.1!.
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quency as the length increases. It implies that the maxim
cooperation between the deterministic signal and rand
noise occurs at lower frequencies as the length increases
low resonant frequency, the particle is affected by the bia
a particular direction for a longer period of time before
suffers a change in the direction of bias, thus there is a hig
probability of covering a large distance toward the bounda
and at this resonant frequency the probability of reaching
boundary in a short time is maximum because if one
creases the frequency more than the resonant frequenc
that length, the flipping rate dominates and the average t
taken by the particle is greater.

Figure 5 demonstrates the lowering of the dispersion
resonant frequencies, confirming that the cooperation
maximum at these frequencies. Dispersion is greater

FIG. 4. MFPT^u(v)& as a function of frequencyv; ~a! L510,
~b! L520, ~c! L530, ~d! L540, ~e! L550 (p52,j05L/2).

FIG. 5. The variances2 as a function ofv; ~a! L510, ~b!
L520, ~c! L530, ~d! L540, ~e! L550 (p52,j05L/2).
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2732 PRE 60ASISH K. DHARA AND TAPAN MUKHOPADHYAY
higher lengths, and as seen from the figure the disper
merges to a specific value at very low frequency at vari
lengths.

All the previous calculations are done when the parti
starts initially from the midpoint of the medium, i.e.,j0 in
Eqs.~15! is taken asL/2. At the lengthL520, the resonan
frequency is found to be 0.1. The calculations are done w
one at resonant frequency and the other two at the
resonant frequencies~v50.5 andv50.0! when the particle
starts fromj05bL, whereb lies between 0 and 1. For zer
frequency, the MFPT can be analytically obtained. Its
pression reads ^u(v50,bL)&5(L/s1)$2b1(1
2exp@2s1bL#)/(12exp@2s1L#)%. The curves are shown in
Fig. 6. It is evident that the value of^u& is lower for resonant
frequency~curve a! than for its value for off-resonant fre
quencies~curvesb andc!. As frequency increases, the max
mum value of^u& occurs at lower values ofb or when the
particle starts from the left of the interval. It is known th
for pure diffusion, the location of the maximum̂u& would
occur for b50.5. Our signal starts with the positive hal
cycle and therefore the survival time of the particle would
greater if the particle started from the left of the interval.
course there would be some limit, because if it started
close to the left end, then diffusion towards the left bound
would dominate and the average time would be less. On
other hand, if it started from the right half of the medium, t
initial surge of the signal would help the particle to reach
boundary more quickly. Hence the average time of durat
would decrease. This fact is also in agreement with lat
simulation work@7#, although most of the simulations in@7#
were obtained for a uniformly distributed initial condition.

We next calculate the FPTDFg(u) for various frequen-
cies for L520 and plot the curves in Fig. 7. The resona
frequency for this length is found to be 0.1. Before the re
nant frequency is reached,g(u) has got two distinct peak
@Fig. 7~a!# and at resonance two peaks merge to a sin
large peak. After the resonance, many smaller peaks ing(u)
gradually emerge as frequency increases more than the
nant frequency@Fig. 7~b!#. This is a general characteristic o
CSR. The heighth and the positionup of the first peak as a

FIG. 6. MFPT^u& as a function ofb for lengthL520; ~a! for
resonant frequencyv* 50.1; ~b! for off-resonant frequencyv50.5;
~c! for off-resonant frequencyv50.0 (p52).
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function of v are plotted in curvea of Fig. 8. The figure
shows that the height of the first peak goes through a m
mum as we increase the frequency while the position of t
peak remains practically constant. The height reaches
maximum near the resonant frequency, demonstrating
the probability of reaching the boundary in a short time
maximum near the resonant frequency. It is a kind of refl
tion of having^u& minimum at that frequency. Therefore,
is a general characteristic of CSR. The height and position
the second peak before the resonance are drawn as curveb in
Fig. 8. At resonance, the two peaks merge and we have
one peak. Just after the resonance, another peak starts d
oping and height increases as frequency increases fur

FIG. 7. ~a! FPTDF g(u) as a function ofu for L520 before
resonance for frequenciesv50.01,0.02,0.03,0.07;~b! FPTDFg(u)
as a function ofu for L520 on and after resonance for frequenci
v50.1 ~resonant!, v50.13,0.2,0.3, respectively (p52,j05L/2).
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The position and height of the second peak after resona
are plotted in curvec of the same figure. The merging an
the reappearance of the second peak are also observed
brake or discontinuity of the dashed line in this figure.

B. Universal features at resonance

In this subsection we concentrate on the behavior of
system at the resonance point. We have already discu
some general characteristics of CSR in the preceding sub
tion. We find that for each length,L, a corresponding fre-
quencyv* exists for which^u& and s2 become minimum,
implying that the maximum cooperation between the de
ministic periodic signal and the random noise of the envir
ment is taking place in helping the particle to reach
boundaries. One therefore would naturally inquire about
relation ofv* with L. The curve ofv* as a function ofL is

FIG. 9. Resonant frequencyv* as a function of lengthL.

FIG. 8. Heighth and the position of the peakup as a function of
v; ~a! for the first peak~solid curve!; ~b! for the second peak befor
resonance~dashed curve!; ~c! for the second peak after resonan
~dotted curve!.
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plotted in Fig. 9. In the range ofL that we studied, this curve
is very well fitted with the formula

v* 52/L. ~19!

The values of MFPT at resonance^u(v* )& are plotted
against the lengthL in Fig. 10 and within the range ofL we
consider the relation between them is fitted to

^u~v* !&50.82L20.14. ~20!

Of course, there will be deviation from this linear behavi
asL decreases further because^u& cannot become negativ
and forL50 ~corresponding toL50), ^u& should be zero.

Similarly the variances2(v* ) is plotted as a function of
L in Fig. 11, and within the range ofL that we consider, this
curve is fitted to

L5a@s2~v* !#21b, ~21!

with a50.004 andb59.2960.82.
We have already seen that at the resonance frequenc

have one very dominant peak of FPTDF,g(u) @Fig. 7~b!#.
Since it is a general feature, for each lengthL we should get
such behavior. We further observe thatv* varies inversely
with L @Eq. ~19!#. With this fact in mind when we plot
g(u)/v* as a function of@v* (L)u#, we find that curves for
all lengths superpose over each other~Fig. 12! and the pat-
tern ofg(u)/v* for differentL or v* is very similar, i.e., at

FIG. 10. MFPT at the resonant frequency^u(v* )& as a function
of lengthL.

FIG. 11. The variance at the resonant frequencys2(v* ) as a
function of the lengthL.
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particular values of@v* u# all curves show their maxima
minima, and change in the behavioral patterns of the cur
occur exactly at the same places of@v* u#. Similar charac-
teristics are also observed in the curves of decay rater for
different frequencies. For illustration, we plotr as a function
of @v* u# for three different lengths~L520, curve a;
L528.57, curveb; L515.38, curvec!, and present the re
sults in Fig. 13. Therefore, it shows that this feature is u
versal and@v* u# or the cycle number is the correct variab
to describe the resonance behavior. We may further note
such scaling of FPTDF would not be possible for any f
quency other than the resonant frequencies, because an
quency which is not the resonant frequency for one len
may turn out to be the resonant frequency for some o
length, and the features of FPTDF are different for reson
and off-resonant frequencies, as has been observed
Figs. 7~a! and 7~b!. The major dominant peaks of FPTD
g(u)/v* for different lengths~L520,28.57,35,40,44.44,50!

FIG. 12. The dominant peaks ofg(u)/v* at resonant frequen
cies for different lengths~L520,28.57,35,40,44.44,50! as a func-
tion of v* u. The lowermost curve is forL520, and as length
increases gradually upper curves are generated (p52,j05L/2).

FIG. 13. The decay rater for different resonant frequencies as
function of v* u: ~a! L520,v* 50.1 ~solid curve!; ~b! L
528.57,v* 50.07 ~dashed curve!; ~c! L515.38,v* 50.13 ~dotted
curve! (p52,j05L/2).
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are drawn as a function of@v* u# in Fig. 12. The lowermost
curve is for L520, and as the length increases the up
curves are generated. The peaks for all the curves o
nearly at a quarter of a cycle.

The peak heighthp and full width at half maximum
~FWHM! for each curve are plotted as a function of reson
frequency. The plot is given in Fig. 14. The plot shows th
except for very low frequency, they behave linearly with t
resonant frequency.

C. Behavior around the resonant point

We have already seen that the cooperation between
deterministic signal and the random noise is maximum at
resonance point where MFPT̂u& variances2 takes mini-
mum values and the corresponding FPTDFg(u) shows a
major dominant peak. What would happen when we cha
the frequency slightly above and below the resonant
quency? To investigate the matter, we choose a partic
length of the medium,L520. The resonance frequency fo
such a lengthv* 50.1. For this particular length, we tak
two off-resonant frequenciesv50.07 and v50.13. The
curves for survival probabilities as a function of timeu are
plotted in Fig. 15, where the curvesa,b,care for frequencies
v50.1,0.07,0.13, respectively. The calculation of the s
vival probability is terminated when it takes the valu
131023, which corresponds to zero in our calculation. T
curves clearly show that as frequency increases, the sur
ability of the particle is prolonged. This is quite understan
able because more oscillations prevent the particle fr

FIG. 14. The heighthp and full width at half maximum
~FWHM! of the peaks in Fig. 12 are plotted as a function of th
corresponding resonant frequencies.
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reaching the boundary, i.e., for higher frequency we exp
^u& more. The oscillatory effect is more pronounced wh
time is large. For large time, we always expect the value
S(u) more for higher frequency. This is clearly observed
Fig. 15. But for frequencies lower than the resonant f
quency, MFPT̂ u& is again more. As MFPT is the integral o
the survival probability over time, we expect a change in
behavior ofS(u) for the lower time regime. This is show
explicitly in Fig. 16. In this figure we find that the surviva
probability is greater for low frequency,v50.07 ~curve b!,
than for resonant frequency,v* 50.1 ~curve a!, and off-
resonant frequencyv50.13~curvec!. Especially for curveb,
the value ofS is much greater than that for curvea, so that
the area under curveb is more than that for curvea. We see
that near aboutu528, the solid curve crosses the dash
curve. There is only one point of crossing throughout
entire time. We have already argued that after this cross
point, the oscillatory effect of this bias dominates. It is th
clear for the low time regime that the diffusion process co
petes over the oscillatory effect. Again, for very lowu the
chance of having an increased value of the bias in the s
direction is greater for high frequency than for low fr
quency. Therefore, for low frequency the survivability
greater than for high frequency. The curves in Fig. 16 a
demonstrate that.

We have already demonstrated how^u(v* )& varies with
L in Fig. 10. The behavior is linear with respect to the leng

FIG. 15. 2 ln S(u) as a function of timeu: ~a! L520,v* 50.1
~solid curve!; ~b! L520,v* 50.07 ~dashed curve!; ~c! L520,v*
50.13 ~dotted curve! (p52,j05L/2).

FIG. 16. S(u) as a function ofu for the same curves as in Fig
15.
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of the medium. It is of interest whether the behavior
changed for off-resonant frequency. For that we choos
frequency which is not the resonant frequency for the leng
L that we consider in our calculation. The MFPT^u(v)& for
that off-resonant frequency is calculated for different leng
and is plotted as a function ofL in Fig. 17. For the range o
length we consider that the curve is fitted to

L5a8^u~voff-res!&
21b8 ~22!

with a850.016 andb858.6860.33. We may note that this
particular off-resonant frequency would be a resonant
quency for some length,L0 , governed by Eq.~19!. In our
case this off-resonant frequency corresponds to lengthL0
.50. The curve shows that whenL!L0 , the rate of change
of MFPT with respect toL is greater, and whenL ap-
proachesL0 or when this frequency tends to be the reson
frequency, the rate is curbed. This could be a signature
approaching a coherent motion from the noncooperative
havior.

IV. CONCLUDING REMARKS

We consider a diffusive transport process perturbed b
periodic signal in a continuous one-dimensional medi
having two absorbing boundaries. No perturbation appro
mation of the signal amplitude is assumed in this formu
tion. We showed explicitly that the cooperative behavior b
tween the deterministic periodic signal and random no
leading to coherent motion occurs when the time-depend
sinusoidal signal is approximated by a multistep periodic s
nal and not with a single-step telegraph signal.

Although we study the process with a three-step perio
signal, the formulation is quite general and applicable
any approximation with an arbitrary number of steps. T
formulation can also be applied to any arbitrary continuo
periodic signal.

It is observed that for large times, oscillation of the sign
plays a dominant role in the transport, while in the low tim
regime, frequency-dependent bias force~i.e., the chance of
having an increased value of the bias in the same directio
more for high frequency than for low frequency! has the key
factor. For very high frequency, the bias effect is practica
absent and the motion is purely diffusive in nature. At t
resonance, the maximum cooperation between the noise

FIG. 17. MFPT at off-resonant frequencŷu(voff-res.)& as a
function of L (p52,j05L/2).
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the periodic signal takes place.
An important characteristic that we observe is that at

resonance the FPTDF for various lengths have similar
havior to a function of cycle number. There is only o
dominant peak and the peak position occurs very close
quarter of a cycle. From Fig. 12 we observe a slight dev
tion of the peak positions, but we believe that if the sin
soidal signal is approximated by more than a three-step
riodic signal, the positions of all the peaks will be the sam

There is also a slight discrepancy in the position of
minimum ofs2 in comparison to the minima of^u& ~Figs. 4
e
e-

a
-
-
e-
.

e

and 5!. This may be due to the fact that all calculations a
terminated when the survival probability takes a value
31023. We observe that if we cut off the calculations fo
lower values of survival probability, it does not affect MFP
but the variances are slightly affected. Also if one appro
mates the sinusoidal signal better than a three-step peri
signal, one could obtain the positions of the minima of va
ances at exactly the same places as those with MFPT.

It is interesting to observe that the decay rate at the re
nance~Fig. 13! after v* u55p/4 is clearly a periodic func-
tion of time.
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